TS
Bridge Engineer
Tempat Nongkrongnya Pemerhati Mekanika Teknik/Analisis Struktur

- Struktur Pembahasan Thread
- Pengantar Mekanika Teknik
- Dasar-dasar Struktur Statis Tertentu
- Beberapa Contoh Struktur Statis Tertentu
- Balok Sendi-Rol Dengan Beban Terpusat
- Reaksi Perletakan Balok Sederhana
- Analisis Balok Sederhana
- Analisis Balok Sederhana (lanjutan)
- Struktur Balok Miring Sederhana
- Semi Portal Dengan Beban Merata dan Terpusat
- Portal Dengan Beban Terpusat dan Merata
- Struktur Balok Gerber
- Struktur Balok Gerber Pada Konstruksi Parabola
- Struktur Balok Gerber Pada Konstruksi Lingkaran
- Struktur Balok Gerber Pada Konstruksi Lingkaran (lanjutan)
- Struktur Balok Gerber Pada Konstruksi Lingkaran (lanjutan)
- Struktur Balok Gerber Pada Konstruksi Lingkaran (lanjutan)
- Pertanyaan Bagus
- Jawaban (1)
- Jawaban (2)
- Jawaban (3)
- Tanya Lendutan
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Pertanyaan bagus dan jawabannya
- Tips Membaca dan Memeriksa Diagram Gaya-gaya Dalam
- Struktur Rangka Batang
- Contoh Bangunan Struktur Rangka Batang
- Tipe Struktur Rangka Jembatan
- Kriteria Desain Jembatan dan Contoh Tipe Rangka Jembatan
- Lanjutan Kriteria Desain
- Kriteria Keruntuhan Struktur
- Asumsi Dasar Analisis Struktur Rangka
- Lanjutan Asumsi Dasar dan Teori Dasar Banget
- Struktur Rangka Batang dengan Kabel
- Struktur Rangka Batang dengan Kabel (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Struktur Jembatan Rangka Dengan Beban Terpusat (lanjutan)
- Stuktur Jembatan Rangka Dengan Beban Simetris
- Struktur Rangka Atap Bangunan
- Struktur Tower dan Crane
- Hal-hal Penting Tentang Analisis Struktur Rangka
- Catatan Dengan Metoda Ritter atau Potongan
- Garis Pengaruh Struktur Sederhana
- Dasar Teori Metoda Elastisitas
- Lendutan Balok Sederhana Akibat Beban Terpusat Dengan Metoda Elastisitas
- Lendutan Balok Sederhana Akibat Beban Merata Dengan Metoda Elastisitas
- Lendutan Balok Sederhana Dengan Beban Asimetrik
- Lendutan Balok Sederhana Dengan Beban Asimetrik (lanjutan)
- Struktur Balok Sederhana Dengan Beban Segitiga
- Balok Dengan Dua Beban Terpusat Menggunakan Metoda Elastisitas
- Balok Gerber Dengan Metoda Elastisitas
- Hubungan Teorema Maxwell-Betti Dengan Metoda Elastisitas
- Analisis Balok Menerus Dengan Metoda Conjugate Beam
- Analisis Struktur Rangka Dengan Metoda Matriks
- Analisis Struktur Rangka Dengan Metoda Matriks (verifikasi)
- Balok Sendi-Rol Dengan Beban Terpusat
- Analisa Penampang Profil
- Struktur Statis Tak Tentu
- Dasar Teori Struktur Statis Tak Tentu
- Dasar Teori Struktur Statis Tak Tentu (lanjutan)
- Prinsip Superposisi Analisis Struktur
- Prinsip Superposisi Analisis Struktur (lanjutan)
- Prinsip Superposisi Analisis Struktur (lanjutan)
- Struktur Portal
- Struktur Portal (lanjutan)
- Dasar Teori Metoda Slope Deflection
- Dasar Teori Metoda Slope Deflection (lanjutan)
- Struktur Portal Dengan Metoda Slope Deflection
- Struktur Portal Dengan Metoda Slope Deflection (lanjutan)
- Struktur Portal Dengan Metoda Slope Deflection (lanjutan)
- Struktur Portal Dua Sendi Dengan Metoda Slope Deflection
- Portal Beban Terdistribusi dan Terpusat Dengan Metoda Slope Deflection
- Struktur Portal Dua Sendi Dengan Metoda Distribusi Momen
- Koefisien Momen Balok Menerus Berdasarkan Metoda Distribusi Momen
- Portal Beban Merata dan Terpusat Dengan Metoda Distribusi Momen
- Keterangan Tambahan Mengenai Metoda Distribusi Momen
- Keterangan Tambahan Mengenai Metoda Distribusi Momen (lanjutan)
- Analisis Balok Menerus Terjepit dengan Metoda Slope Deflection
- Dasar Teori Metoda Energi
- Dasar Teori Metoda Energi (lanjutan)
- Dasar Teori Metoda Energi (lanjutan)
- Dasar Teori Metoda Energi (lanjutan)
- Dasar Teori Metoda Energi (lanjutan)
- Dasar Teori Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Struktur Rangka Dengan Metoda Energi (lanjutan)
- Metoda Elastisitas Pada Struktur Terjepit Di Kedua Ujungnya
- Struktur Balok Menerus Dengan Metoda Elastisitas
- Struktur Balok Menerus Dengan Metoda Elastisitas (lanjutan)
- Struktur Balok Menerus Dengan Metoda Elastisitas (lanjutan)
- Struktur Balok Menerus Dengan Metoda Elastisitas (lanjutan)
- Dasar Teori Metoda Persamaan Tiga Momen
- Dasar Teori Metoda Persamaan Tiga Momen (lanjutan)
- Struktur Portal Dua Sendi Dengan Metoda Persamaan Tiga Momen
- Struktur Portal Dua Sendi Dengan Metoda Persamaan Tiga Momen (lanjutan)
- Struktur Balok Terjepit Pada Kedua Ujung Dengan Metoda Persamaan Tiga Momen
- Struktur Balok Terjepit Pada Kedua Ujung Dengan Metoda Persamaan Tiga Momen (lanjutan)
- Struktur Balok Terjepit Pada Kedua Ujung Dengan Metoda Momen Area
- Struktur Balok Terjepit Pada Kedua Ujung Dengan Metoda Momen Area (lanjutan)
- Dasar Teori Struktur Statis Tak Tentu
- Sepintas Tentang Dinamika Struktur Jembatan
- Frekuensi Alami Struktur
- Frekuensi Alami Struktur (lanjutan)
- Frekuensi Alami Struktur (lanjutan)
- Frekuensi Alami Struktur (lanjutan)
- Frekuensi Alami Struktur (lanjutan)
- Ilustrasi Permasalahan (1)
- Ilustrasi Permasalahan (2)
- Ilustrasi Permasalahan (3)
- Frekuensi Alami Struktur
- Beberapa Contoh Kasus
- Penanganan Kerusakan Jembatan Katingan (Prov. Kalteng)
- Penanganan Kerusakan Jembatan Katingan (lanjutan)
- Penanganan Kerusakan Jembatan Katingan (lanjutan)
- Penanganan Kerusakan Jembatan Katingan (lanjutan)
- Penanganan Kerusakan Jembatan Katingan (Prov. Kalteng)
- Obrolan Santai
- Pertama
- Kedua
- Ketiga
- Keempat
- Kelima
- Keenam
- Ketujuh
- Kedelapan
- Kesembilan
- Kesepuluh
- Kesebelas
- Dokumen Pemeriksaan Jembatan
- Pertama
- Kepustakaan
- Sumbangan Kaskuser
- Dokumentasi Fabrikasi Struktur Jembatan yang TS Kunjungi di Luar Negeri
ngindeksnya masih dilanjutin...
selalu update untuk setiap pertanyaan/komentar tentang analisis struktur.
Diubah oleh Bridge Engineer 22-10-2017 17:45
febrinx dan 8 lainnya memberi reputasi
9
417.1K
1.9K
Komentar yang asik ya
Mari bergabung, dapatkan informasi dan teman baru!
Sipil
1.8KThread•884Anggota
Tampilkan semua post
TS
Bridge Engineer
#427
Quote:
kalau besar, tipe dan posisi gaya serta jumlah perletakan berubah, maka analisisnya juga berubah. Namun prinsipnya sama saja.
Quote:
boleh dong...
kirim saja ke tasik11111@yahoo.com
Quote:
sel = selisih dari (Mtotal - FEM)
setsel = setengah selisih = mencari CO (carry over)
msetsel = minus dari setsel = -setsel
jumlah = sel + msetsel
gaya = gaya reaksi di perletakan akbat Mtotal dan beban eksternal.
besar sudut tetha di perletakan = jumlah/(3EI/L)
Quote:
perhatikan gambar di bawah ini untuk mencari gaya reaksi Vi dan Vj

ΣM di titik j = 0
Mij + Mji + Vi * L - P * b - ½ Q L² = 0
Vi = -(Mij + Mji - P * b - ½ Q L²)/L
dengan cara yang sama untuk ΣM di titik i = 0
Vj = (Mij + Mji + P * a + ½ Q L²)/L
jika hanya ada beban terbagi rata Q = 1 dan L = 1 maka :
Vi = -(Mij + Mji - ½ * 1 * 1²)/1
Vj = (Mij + Mji + ½ * 1 * 1²)/1
dan untuk mencari momen gaya di lapangan, perhatikan potongan struktur di bawah ini :

berdasarkan syarat kesetimbangan,
ΣM di potongan = 0
-Mx - ½ Q x² + Mij + Vi * x = 0
Mx = - ½ Q x² + Mij + Vi * x
jika hanya ada beban terbagi rata Q = 1 dan L = 1 maka momen gaya di tengah bentang, x = ½
Mx = - ½ * 1 * (½)² + Mij + ((Mij + Mji + ½ * 1 * 1²)/1) * ½
Mx bisa dicari.
demikian juga dengan cara yang sama untuk beban terpusat P = 1 ketika mencari reaksi perletakan Vi dan Vj serta momen gaya di tengah bentang.
0